Γ-cycles and Transivity by Monochromatic Paths in Arc-coloured Digraphs
نویسندگان
چکیده
We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. If D is an m-coloured digraph and a ∈ A(D), colour(a) will denote the colour has been used on a. A path (or a cycle) is called monochromatic if all of its arcs are coloured alike. A γ-cycle in D is a sequence of vertices, say γ = (u0, u1, . . . , un), such that ui 6= uj if i 6= j and for every i ∈ {0, 1, . . . , n} there is a uiui+1-monochromatic path in D and there is no ui+1ui-monochromatic path in D (the indices of the vertices will be takenmodn+1). A setN ⊆ V (D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u, v ∈ N there is no monochromatic path between them and; (ii) for every vertex x ∈ V (D) \N there is a vertex y ∈ N such that there is an xy-monochromatic path. Let D be a finite m-coloured digraph. Suppose that {C1, C2} is a partition of C, the set of colours of D, and Di will be the spanning subdigraph of D such that A(Di) = {a ∈ A(D) | colour(a) ∈ Ci}. In this paper, we give some sufficient conditions for the existence of a kernel by monochromatic paths in a digraph with the structure mentioned above. In particular 494 E. Casas-Bautista, H. Galeana Sánchez and R. Rojas-Monroy we obtain an extension of the original result by B. Sands, N. Sauer and R. Woodrow that asserts: Every 2-coloured digraph has a kernel by monochromatic paths. Also, we extend other results obtained before where it is proved that under some conditions an m-coloured digraph has no γ-cycles.
منابع مشابه
Kernels in edge coloured line digraph
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set N ⊆ V (D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions (i) for every pair of different vertices u, v ∈ N there is no monochromatic directed path between t...
متن کاملMonochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. We call the digraph D an m-coloured digraph if each arc of D is coloured by an element of {1, 2, . . . , m} where m ≥ 1. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if there is no monochromatic path...
متن کاملMonochromatic kernel-perfectness of special classes of digraphs
A digraph D is said to be an m-coloured digraph, if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set N ⊆ V (D) of vertices of D is said to be a kernel by monochromatic paths of the m-coloured digraph D, if it satisfies the two following properties: (1) N is independent by monochromatic paths; i.e., f...
متن کاملKernels in monochromatic path digraphs
We call the digraphD anm-coloured digraph if its arcs are coloured withm colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. Let D be an m-coloured digraph. A set N ⊆ V (D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u, v ∈ N there is no monochromati...
متن کاملExtensions of edge-coloured digraphs
A digraph D is said to be an m-coloured digraph, if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set N ⊆ V (D) of vertices of D is said to be a kernel by monochromatic paths of the m-coloured digraph D, if it satisfies the two following properties : (1) N is independent by monochromatic paths; i.e. f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 33 شماره
صفحات -
تاریخ انتشار 2013